Copied to
clipboard

G = A4×C22×C4order 192 = 26·3

Direct product of C22×C4 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×C22×C4, C245C12, C25.3C6, (C24×C4)⋊1C3, (C23×C4)⋊4C6, C234(C2×C12), C22⋊(C22×C12), C2.1(C23×A4), (C23×A4).4C2, C23.30(C2×A4), C24.26(C2×C6), (C2×A4).11C23, C23.28(C22×C6), C22.17(C22×A4), (C22×A4).16C22, (C22×C4)⋊16(C2×C6), SmallGroup(192,1496)

Series: Derived Chief Lower central Upper central

C1C22 — A4×C22×C4
C1C22C23C2×A4C22×A4C23×A4 — A4×C22×C4
C22 — A4×C22×C4
C1C22×C4

Generators and relations for A4×C22×C4
 G = < a,b,c,d,e,f | a2=b2=c4=d2=e2=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >

Subgroups: 816 in 317 conjugacy classes, 81 normal (12 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C6, C2×C4, C2×C4, C23, C23, C23, C12, A4, C2×C6, C22×C4, C22×C4, C22×C4, C24, C24, C2×C12, C2×A4, C2×A4, C22×C6, C23×C4, C23×C4, C25, C4×A4, C22×C12, C22×A4, C24×C4, C2×C4×A4, C23×A4, A4×C22×C4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C23, C12, A4, C2×C6, C22×C4, C2×C12, C2×A4, C22×C6, C4×A4, C22×C12, C22×A4, C2×C4×A4, C23×A4, A4×C22×C4

Smallest permutation representation of A4×C22×C4
On 48 points
Generators in S48
(1 31)(2 32)(3 29)(4 30)(5 38)(6 39)(7 40)(8 37)(9 35)(10 36)(11 33)(12 34)(13 28)(14 25)(15 26)(16 27)(17 43)(18 44)(19 41)(20 42)(21 47)(22 48)(23 45)(24 46)
(1 11)(2 12)(3 9)(4 10)(5 27)(6 28)(7 25)(8 26)(13 39)(14 40)(15 37)(16 38)(17 23)(18 24)(19 21)(20 22)(29 35)(30 36)(31 33)(32 34)(41 47)(42 48)(43 45)(44 46)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(5 27)(6 28)(7 25)(8 26)(13 39)(14 40)(15 37)(16 38)(17 23)(18 24)(19 21)(20 22)(41 47)(42 48)(43 45)(44 46)
(1 11)(2 12)(3 9)(4 10)(17 23)(18 24)(19 21)(20 22)(29 35)(30 36)(31 33)(32 34)(41 47)(42 48)(43 45)(44 46)
(1 5 19)(2 6 20)(3 7 17)(4 8 18)(9 25 23)(10 26 24)(11 27 21)(12 28 22)(13 48 34)(14 45 35)(15 46 36)(16 47 33)(29 40 43)(30 37 44)(31 38 41)(32 39 42)

G:=sub<Sym(48)| (1,31)(2,32)(3,29)(4,30)(5,38)(6,39)(7,40)(8,37)(9,35)(10,36)(11,33)(12,34)(13,28)(14,25)(15,26)(16,27)(17,43)(18,44)(19,41)(20,42)(21,47)(22,48)(23,45)(24,46), (1,11)(2,12)(3,9)(4,10)(5,27)(6,28)(7,25)(8,26)(13,39)(14,40)(15,37)(16,38)(17,23)(18,24)(19,21)(20,22)(29,35)(30,36)(31,33)(32,34)(41,47)(42,48)(43,45)(44,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (5,27)(6,28)(7,25)(8,26)(13,39)(14,40)(15,37)(16,38)(17,23)(18,24)(19,21)(20,22)(41,47)(42,48)(43,45)(44,46), (1,11)(2,12)(3,9)(4,10)(17,23)(18,24)(19,21)(20,22)(29,35)(30,36)(31,33)(32,34)(41,47)(42,48)(43,45)(44,46), (1,5,19)(2,6,20)(3,7,17)(4,8,18)(9,25,23)(10,26,24)(11,27,21)(12,28,22)(13,48,34)(14,45,35)(15,46,36)(16,47,33)(29,40,43)(30,37,44)(31,38,41)(32,39,42)>;

G:=Group( (1,31)(2,32)(3,29)(4,30)(5,38)(6,39)(7,40)(8,37)(9,35)(10,36)(11,33)(12,34)(13,28)(14,25)(15,26)(16,27)(17,43)(18,44)(19,41)(20,42)(21,47)(22,48)(23,45)(24,46), (1,11)(2,12)(3,9)(4,10)(5,27)(6,28)(7,25)(8,26)(13,39)(14,40)(15,37)(16,38)(17,23)(18,24)(19,21)(20,22)(29,35)(30,36)(31,33)(32,34)(41,47)(42,48)(43,45)(44,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (5,27)(6,28)(7,25)(8,26)(13,39)(14,40)(15,37)(16,38)(17,23)(18,24)(19,21)(20,22)(41,47)(42,48)(43,45)(44,46), (1,11)(2,12)(3,9)(4,10)(17,23)(18,24)(19,21)(20,22)(29,35)(30,36)(31,33)(32,34)(41,47)(42,48)(43,45)(44,46), (1,5,19)(2,6,20)(3,7,17)(4,8,18)(9,25,23)(10,26,24)(11,27,21)(12,28,22)(13,48,34)(14,45,35)(15,46,36)(16,47,33)(29,40,43)(30,37,44)(31,38,41)(32,39,42) );

G=PermutationGroup([[(1,31),(2,32),(3,29),(4,30),(5,38),(6,39),(7,40),(8,37),(9,35),(10,36),(11,33),(12,34),(13,28),(14,25),(15,26),(16,27),(17,43),(18,44),(19,41),(20,42),(21,47),(22,48),(23,45),(24,46)], [(1,11),(2,12),(3,9),(4,10),(5,27),(6,28),(7,25),(8,26),(13,39),(14,40),(15,37),(16,38),(17,23),(18,24),(19,21),(20,22),(29,35),(30,36),(31,33),(32,34),(41,47),(42,48),(43,45),(44,46)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(5,27),(6,28),(7,25),(8,26),(13,39),(14,40),(15,37),(16,38),(17,23),(18,24),(19,21),(20,22),(41,47),(42,48),(43,45),(44,46)], [(1,11),(2,12),(3,9),(4,10),(17,23),(18,24),(19,21),(20,22),(29,35),(30,36),(31,33),(32,34),(41,47),(42,48),(43,45),(44,46)], [(1,5,19),(2,6,20),(3,7,17),(4,8,18),(9,25,23),(10,26,24),(11,27,21),(12,28,22),(13,48,34),(14,45,35),(15,46,36),(16,47,33),(29,40,43),(30,37,44),(31,38,41),(32,39,42)]])

64 conjugacy classes

class 1 2A···2G2H···2O3A3B4A···4H4I···4P6A···6N12A···12P
order12···22···2334···44···46···612···12
size11···13···3441···13···34···44···4

64 irreducible representations

dim111111113333
type++++++
imageC1C2C2C3C4C6C6C12A4C2×A4C2×A4C4×A4
kernelA4×C22×C4C2×C4×A4C23×A4C24×C4C22×A4C23×C4C25C24C22×C4C2×C4C23C22
# reps16128122161618

Matrix representation of A4×C22×C4 in GL5(𝔽13)

120000
01000
001200
000120
000012
,
120000
012000
001200
000120
000012
,
80000
01000
001200
000120
000012
,
10000
01000
00100
000120
0012012
,
10000
01000
001200
000120
00111
,
10000
01000
00010
00121211
00001

G:=sub<GL(5,GF(13))| [12,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[8,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,12,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,12,0,1,0,0,0,12,1,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,1,12,0,0,0,0,11,1] >;

A4×C22×C4 in GAP, Magma, Sage, TeX

A_4\times C_2^2\times C_4
% in TeX

G:=Group("A4xC2^2xC4");
// GroupNames label

G:=SmallGroup(192,1496);
// by ID

G=gap.SmallGroup(192,1496);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,2,142,530,909]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^4=d^2=e^2=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

׿
×
𝔽